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Abstract The ability to effectively combine sensory
inputs across modalities is vital for acquiring a unified
percept of events. For example, watching a hammer hit a
nail while simultaneously identifying the sound as origi-
nating from the event requires the ability to identify spatio-
temporal congruencies and statistical regularities. In this
study, we applied a reaction time and hazard function
measure known as capacity (e.g., Townsend and Ashby-
Cognitive Theory 200-239, 1978) to quantify the extent to
which observers learn paired associations between simple
auditory and visual patterns in a model theoretic manner.
As expected, results showed that learning was associated
with an increase in accuracy, but more significantly, an
increase in capacity. The aim of this study was to associate
capacity measures of multisensory learning, with neural
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based measures, namely mean global field power (GFP).
We observed a co-variation between an increase in
capacity, and a decrease in GFP amplitude as learning
occurred. This suggests that capacity constitutes a reliable
behavioral index of efficient energy expenditure in the
neural domain.

Keywords Capacity - Audiovisual integration -
Multisensory learning - Global field power -
Hazard functions

Introduction

The majority of our perceptions are derived from multiple
sensory modalities. For example, when we see a talker’s
face, we can obtain supplementary information from lip-
reading to facilitate word and sentence comprehension.
Each of these sensory inputs is combined into a unified
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percept. Such integration across modalities can result in
significant behavioral benefits, including but not limited to
faster response times (RTs) (e.g. Diederich and Colonius
2004; Hershenson 1962), enhanced detection rates (e.g.
Lovelace et al. 2003), and improved spatial localization
(e.g. Nelson et al. 1998). These processes are far from
simple, however. One of the more substantial issues that
must be overcome is known as the binding problem,
originally defined by William James (James 1890). At any
given moment, there is a large quantity of incoming sen-
sory information in each modality and a well-adapted
perceptual system must be able to correctly bind sensory
information that originates from a single source into a
unified percept, but at the same time, must correctly seg-
regate sensory information that originates from different
sources.

The impact of stimulus factors in multisensory integra-
tion has been relatively well studied. Research originally
using single unit recordings has identified three primary
factors that modulate whether or not two sensory inputs are
integrated, and whether there is a neural benefit relative to
unisensory responses (also known as multisensory gain),
concepts that have been generalized to studies of human
neuroimaging, behavior, and perception.' The first factor is
the spatial congruence of the auditory and visual inputs.
The more spatially congruent the stimuli, the more likely
they are to be perceptually bound and contribute to mul-
tisensory gain, a finding seen from animal neurophysiology
(Meredith and Stein 1986a, b; Wallace et al. 2004), human
neuroimaging (Fiebelkorn et al. 2010; Macaluso et al.
2004; Meredith and Stein 1996), and human behavior and
perception (Frens et al. 1995; Munhall and Vatikiotis-
Bateson 2004; Wallace et al. 2004). Similarly, the temporal
coincidence of auditory and visual inputs influence inte-
gration; the more synchronous they are, the greater the
probability of integration. Like the spatial principle, the
temporal principle has been demonstrated in studies of
animal neurophysiology (Meredith et al. 1987; Wallace
et al. 2004), human neuroimaging (James and Stevenson,
2012; Macaluso et al. 2004; Miller and D’Esposito 2005;
Stevenson et al. 2010, 2011; Talsma et al. 2009; van Att-
eveldt et al. 2007), and human behavior and perception
(Colonius and Diederich 2010; Conrey and Pisoni 2006;
Diederich and Colonius 2009; Dixon and Spitz 1980;
Hillock et al. 2011; Keetels and Vroomen 2005; van
Wassenhove et al. 2007; Zampini et al. 2005).

Both the spatial and temporal factors are reflective of the
statistics of the natural environment. The third stimulus

! It is worth noting that these principles are not necessarily associated
with stimulus features per se, but rather neural features including
receptive field properties, effectiveness in eliciting action potentials,
etc.
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factor is effectiveness, or the ability of a stimulus to drive a
given response. Stimulus effectiveness modulates multi-
sensory interactions in such a way that less salient stimuli
produce greater multisensory enhancement relative to
unisensory responses. This phenomenon is known as
inverse effectiveness, which has again been demonstrated
in animal neurophysiology (Meredith and Stein 1986b;
Stein et al. 2009; Wallace et al. 1996), human neuroim-
aging (James et al. 2012; Stevenson et al. 2012, 2009;
Stevenson and James 2009), and human behavior (Altieri
and Townsend 2011; Hecht et al. 2008).

The benefits of multisensory integration can be seen not
only with behavioral facilitation, but also with changes in
the neural response properties. Congruency effects have
been measured in a wide network of brain regions
depending upon the tasks and stimuli used (Doehrmann and
Naumer 2008). For example, a collection of fMRI studies
have identified inferior frontal cortex and superior temporal
cortex as two primary regions showing such congruency
effects with objects (Belardinelli et al. 2004; Hein et al.
2007; Noppeney et al. 2008) and speech (Calvert et al.
2000; Stevenson et al. 2010, 2011; van Atteveldt et al.
2004; van Atteveldt et al. 2007), though it should be noted
that effects are not necessarily confined to these regions
(Laurienti et al. 2003; Taylor et al. 2006).

Multisensory Perceptual Training

The manner with which stimulus inputs are integrated
across the senses can be rapidly changed with perceptual
training. For example, the impact that temporal coinci-
dence has on the binding of auditory and visual changes
can be manipulated in laboratory settings. Through con-
sistent presentations of slightly asynchronous stimuli, the
window of temporal offsets in which an individual will
perceptually bind audiovisual stimuli can be shifted
(Vroomen et al. 2004). Similarly, perceptual feedback
training can narrow the temporal binding window,
increasing the temporal precision of individuals in making
judgments about audiovisual relationships (Powers et al.
2012; Powers et al. 2009; Stevenson et al. 2013). These
examples of multisensory malleability show that even into
adulthood, the mechanisms used to merge information
across sensory modalities remains plastic. A study by
Tanabe et al (2005) used feedback training to teach par-
ticipants to associate arbitrary pairs of temporally modu-
lated noise and visual texture patterns. Using a delayed
match-to-sample task, the authors showed a decrease in
superior temporal sulcus activation subsequent to training
(a known region of audiovisual integration; Beauchamp
et al. 2004; Calvert et al. 2000; James et al. 2011; Ste-
venson et al. 2007, 2009). Importantly, this decrease was
correlated with behavioral accuracy in identifying
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associated pairs, suggesting an increased efficiency of
processing with learned audiovisual associations.

In the current study, we propose that an increase in
capacity—a reaction time measure of efficiency—will
result from a learned association between previously
unassociated auditory and visual stimuli (auditory pure-
tones and Gabor patches). We define “efficiency” in the
neural and behavioral domains as the ability to complete a
task in a finite amount of time when provided with a certain
amount of perceptual channels or processing resources.
Consider a multisensory matching task in which the par-
ticipant must make a “yes” response when two stimuli
correspond to one another. Assume the availability of
auditory and visual information, as well as a certain
amount of neural resources. Efficiency increases when
participants are able to make correct responses faster or
more accurately, given the information available. We
measure efficiency using a RT measure of capacity (e.g.,
Townsend and Ashby 1978; see also Townsend and
Wenger 2004; Wenger and Gibson 2004) which will be
described later.

In the neural domain, increases in efficiency should be
reflected by a decrease in brain signals; that is, as one
learns the task, less energy should have to be applied to
distinguish the patterns that match from the ones that
mismatch. Participants will be trained to make a “yes”
response if and only if the frequency exhibited by the
auditory pure tone and the Gabor Patch correspond to the
trained match, and a “no” response otherwise. The purpose
of this study is to observe co-variations between capacity
as a statistical measure of multisensory learning, and brain
activation, which index a change in the amount of energy
expended by the neurocognitive system as learning occurs.

Methods: Modeling
Capacity: A Measure of Efficiency

Learning often involves becoming attuned to auditory,
visual, or multimodal regularities (e.g., Saffran et al. 1999;
Seitz et al. 2007), and the subsequent transfer of this
knowledge to memory. Traditional assessments of learning
rely on measuring changes in accuracy, or in the case of
perceptual learning, mean changes in threshold across
stages of practice (e.g., Altieri and Wenger, Under Review;
Dosher and Lu 1999; McKee and Westheimer 1978).
Learning and memory are strongly associated with the
notion of efficiency or capacity. For example, Capacity in
memory has undergone a re-conceptualization over the
years to include stages of learning and transfer via practice
(e.g., Cowan et al. 2005; see also Atkinson and Shiffrin
1968). Nonetheless, capacity is often viewed as a fixed

construct that does not change across time (cf. Townsend
and Altieri 2012).

A considerable body of literature has recast the notion of
capacity as a measure of efficiency, using RT distributions
(e.g., Townsend and Nozawa 1995; Wenger and Gibson
2004) or a combination of RTs and accuracy (Townsend
and Altieri 2012). As Wenger and Gibson (2004) argued,
assessing capacity in terms of mean RTs or mean accuracy
has several shortcomings. First, means provide only an
expected value and therefore do not map well onto the
notion of efficiency or capacity as a measure of system
level performance. Second, cognitive processes involved in
learning, memory, and recognition, expend some amount
of energy and must be completed in a finite amount of time.
Capacity is a measure that assesses the instantaneous
amount of energy at a certain processing time expended to
yield recognition. Specifically, this approach described
next utilizes information from RT distributions to provide
the probability that a process will “finish” in the next
instant of time (i.e., recognition occurs), given that it has
not yet terminated.

Hazard Functions and Efficiency

An important component of our investigation centers on
the implementation of a measure capturing the idea that
learning involves the increasingly efficient use of cognitive
resources. We accomplish this by measuring capacity and
examining the data at the level of the hazard function. One
way in which capacity may be measured, and the method
favored here, involves obtaining the distribution of RTs
from a given experimental condition (for example, from
audiovisual trials, as done here), and computing the esti-
mated hazard functions from the different conditions. The
hazard function provides the probability that a process will
be completed in the next instant in time, given that it has
not completed already by time #. The hazard function may
be written as:

P<T<t+ AT >1)

"= T |
or simply,
f()

") =150

The term f{t) denotes the probability density function,
while F(?) is the cumulative probability density function
yielding the probability that recognition has occurred by a
certain time. The term in the denominator, 1—F(?), is a
survivor function expressing the probability that a process
has not completed by a certain time.

The use of hazard functions has been favored in the
literature since they provide an estimate of the “intensity”

@ Springer
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or the instantaneous amount of work completed (Townsend
and Ashby 1978; see also Wenger and Gibson 2004).
Utilizing hazard functions affords several statistical
advantages compared to using mean RTs or accuracy. As
one example, Townsend (1990) proved that an ordering of
hazard functions from two experimental conditions (A and
B) such that h(?) > hg(t) implies not only greater work
completed in condition A relative to B, but also an ordering
of the means from those conditions. However, the converse
is not always true—an ordering of means does not imply an
ordering of hazard functions.

Cox Regression

One potential disadvantage to using hazard functions
concerns the difficulty associated with hazard function
estimation (Luce 1986). While several remedies have been
proposed (see Wenger and Gibson 2004; Wenger et al.
2010), we shall employ a semi-parametric regression pro-
cedure known as Cox proportional hazard models (Cox
1972). The purpose of proportional hazard model regres-
sion is to test for ordering of two or more hazard functions
derived from different experimental conditions. Cox
regression essentially transforms the proportional hazard
functions into linear regression. Here, an independent
variable (i.e., experimental conditions) may serve as a
predictor, while the RTs obtained from these conditions
serve as the data or “y” variable. Proportional hazard
model regression is based on a log-linear regression pro-
cedure, and the method implemented here uses a specific
class of models known in the literature as the fixed-effects
partial likelihood approach (e.g., Allison 1996). Specifi-
cally, it is assumed that the underlying hazard function for
the jth trial in participant 1 at time can be written as
In[h;(t)] = Bx,;(H) + o, () + €;. The term o, (¢) denotes a
baseline hazard function particular to that observer, and
x;(t) represents one of the experimental factors, in our case
the training day, that could influence the rate of processing
on a given trial. The weight B represents the relative
strength or influence of this factor. Finally, €; denotes the
unobservable heterogeneity particular that that individual,
although this can be absorbed into the baseline hazard,
giving us In[h;(1)] = Bx(t) + o, ().

One benefit to the hazard function approach is that few
parametric assumptions regarding the underlying distribu-
tion of the data need to be made. The only major
requirement relates to the assumption of proportionality
between the hazard functions from two or more experi-
mental conditions (see Wenger and Gibson 2004). In the
context of our specific case, the underlying hazard func-
tions across days of learning must be proportional to each
other. For example, the hazard functions for days 1 and 2
for a given individual should be h;(t) = yhy(t), where y

@ Springer

reflects a constant of proportionality that remains invariant
across trials, time, and experimental trials. As we shall
demonstrate, the data within each of our participants
reflects this assumption. One graphical test for the pro-
portionality assumption begins with the fact that since
h;(t) = yhy(t), it must also be true that H,;(t) = yH(t).
Then, because we know that the integrated hazard function
H(t) = —In[S(t)] (where (S(t) = 1—F(t), or 1-CDF), we
can arrive at the following formula: —In[S;(?)] = v{—
In[S,(#)]}. Finally, we obtain the log of both sides to get
In[—In[S;()]] = In[y] + In{—In[S>(2)]}.

Conveniently, many common statistical packages (e.g.,
R and Matlab) allow one to apply the proportional hazard
model test. Second, it requires few assumptions, the major
one being that the underlying hazard functions are pro-
portional to one another (which can be tested as we discuss
later). Furthermore, unlike many statistical tests such as a
z-test, the proportional hazard model does not make
assumption regarding the parametric form of the underly-
ing RT distribution. As an example, it does not require
researchers to assume a normal distribution in the data. In
this study, we assessed learning in the contextual frame-
work of capacity by measuring capacity and implementing
the Cox proportional hazard model. The hypothesis was
that as participants learned the association across days (the
regression variable) as a result of practice, RTs would
decrease, and hence, the instantaneous amount of work
completed measured by proportional hazards would
increase.

Methods: Experimental Design

The purpose of this study involved analyzing the EEG
signal (a time based neural measure) in conjunction with
capacity as a function of learning across days. Because
capacity constitutes a behaviorally based measure of
energy expenditure, we expected to uncover distinct neural
covariates of efficiency in terms of “work completed”.
Specifically, as capacity increases as observers learn the
association between the auditory and visual patterns, we
expect to find a corresponding decrease in the amplitude of
the EEG signal between the conditions in which the com-
ponents matched versus when the components were mis-
matched. Hence, we predict that the energy required to
discriminate the matched versus mismatched signals
should decrease across days as observers show evidence for
learning (see e.g., Stevenson et al. 2007, for an analogue
using fMRI). Specifically, we predicted a co-variation
between mean Global Field Power (GFP)—a measure of
spatial standard deviation (e.g., Skrandies 1990), and
capacity. As capacity increases, the difference in GFP
between the matched versus mismatched AV signal should
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decrease. Capacity should essentially index a perceptual
component mirroring increasingly efficient use of neural
resources as learning unfolds.

Finally, a significant motivation for the predicted co-
variation between behavioral and neural measures of effi-
ciency lies in recent findings suggesting that capacity is a
superior predictor of the integrity of neural circuits perti-
nent to episodic memory compared to mean RT or accu-
racy (Wenger et al. 2010). Wenger et al. (2010) carried out
an analysis of capacity in an episodic cued memory task
using aging participants. The authors found that the per-
formance of a computational model of a hippocampal
circuit, as a function of different levels of degradation, was
a superior predictor of capacity scores (compared to mean
RT and accuracy) in normal aging, MCI (mild cognitive
impairment), and participants with dementia of the Alz-
heimer’s type.

Participants

Four right-handed college-aged observers were recruited
from The University of Oklahoma campus and paid for
their participation (mean age = 21). Each of the observers
had normal or corrected-to-normal vision and reported no
history of hearing or cognitive impairment. Participants
were naive regarding the purpose of the study. This study
was approved by the University of Oklahoma Institutional
Review Board and meets the qualifications for ethical
research participation.

Materials

The visual stimuli consisted of diagonally oriented (45°)
Gabor patches presented foveally in the center of the

Fig. 1 Gabor patches oriented
diagonally. The visual stimuli,
when present consisted of 1 of 6
levels of frequency as shown in
this figure. From the top left to
the bottom right cycles in Hz: 4,
5, 6.6, 8.3, 12.5, and 25 Hz.
Auditory pure tones were
created at 400, 500, 660, 830,
1,250, and 2,500 Hz

”

e

screen. Figure 1 shows examples of the six Gabor gratings
presented in the audiovisual task. Stimuli were created on a
continuum ranging from “low” to “high” frequency in six
step sizes. The lowest frequency Gabor patch was created
at 4 Hz, followed by 5, 6.6, 8.3, 12.5 Hz, up to the highest
frequency of 25 Hz. The stimuli were designed in such a
way as to create perceptually similar step sizes in fre-
quency at each point in the continuum. Stimuli were pre-
sented centered on a4 x 4 inch square with a luminance of
75 cd/m? at a background luminance level of 46 cd/m?.
Experimental stimuli were presented on a gamma-cor-
rected computer CRT monitor.

The auditory stimuli consisted of digitized pure tones
created in Matlab. The tones were presented at approxi-
mately 68 dB SPL over speakers positioned to each side of
the participant in a quiet, sound attenuated booth. Similar
to the visual stimuli, the tones were created on a six-step
continuum ranging from “low” to “high” frequency. The
lowest frequency tone was digitized at 400 Hz, followed by
500, 660, 830, 1250 Hz, and finally, 2500 Hz.

The auditory and visual stimulus components were
factorially combined at each level (6-visual x 6-auditory)
for a total of 36 unique audiovisual trial types. Auditory
and visual-only trials were presented as well, for a total of
48 trial types. Stimuli were presented in a completely
darkened sound attenuated chamber and were all 100 ms in
duration and simultaneously presented. Participants were
seated 76 cm from the monitor and their chins were placed
comfortably on a chin rest.

Procedure

The experiment required 7 days for each observer. Each
experimental session lasted approximately 45-60 min.

@ Springer
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Table 1 This table shows the total number of trials presented for
each stimulus configuration. That is, there are 36 AV stimuli, plus 6
A-only and 6 V-only for a total of 48 trial types

Vi V, Vi V, Vs Vg  A-only
A 140 56 56 56 56 56 140
A, 56 140 56 56 56 56 140
As 56 56 140 56 56 56 140
Al 56 56 56 140 56 56 140
As 56 56 56 56 140 56 140
Ag 56 56 56 56 56 140 140

V-Only 140 140 140 140 140 140

The columns on the diagonal (in bold) correspond to the “yes” trials
in which the frequency of the Gabor patch and tone match

Observers participated in one session per day with a total of
600 trials per day (120 A-only with 20 at each frequency,
120 V-only with 20 at each frequency, 120 AV when fre-
quencies matched, and 240 AV trials when the frequencies
mismatched).? Each experimental trial began with a black
dot appearing in the center of a white background on the
computer monitor. This was the cue for the participant to
initiate the experimental trial by pressing the left button on
the button pad in front of them. The initiation of each trial
began with a random fore period of 100-500 ms followed
by either an audiovisual, auditory-only, or visual-only trial.

Audiovisual trials consisted of a simultaneously pre-
sented tone and Gabor patch. Of the 360 AV trials pre-
sented per session, 120 of these were trials in which the
frequency components matched (i.e., were associated).
Because the purpose of this study involved teaching par-
ticipants to associate auditory and visual images in terms of
physical stimulus properties, participants were instructed to
respond by pressing the right button labeled YES as
quickly and as accurately as possible when the frequency
of the auditory and visual modalities were associated (see
below for a description of the method of association). The
diagonal columns (in bold) in Table 1 show the total
number of each type of “yes” trials for each cell in which
the auditory and visual frequency components matched.
The off-diagonal columns show the cases in which auditory
and visual information were presented but did not match.
Participants were instructed to respond “no” on these
trails. On the auditory-only trials, the tone was presented

2 Contingencies, or probabilistic stimulus configurations that could
facilitate/inhibit audiovisual target (i.e., matched) trial responses
(Mordkoff and Yantis 1991), were reduced by appropriately balanc-
ing redundant, single, and target-absent trials. Although this yielded a
difference in the number of matched and mismatched audiovisual
trials, the proportion remained constant across training days. Hence,
holding the proportion of audiovisual matched versus mismatched
trials constant across days provides a valid way to examine the effects
of training on changes in capacity and neural signals.
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with a static gray square. On the visual-only trials, a Gabor
patch was presented without an accompanying sound.
Participants were required to make a “no” response on
unisensory trials. RTs and accuracy were collected from
both “yes” and “no” trials and utilized in the subsequent
data analysis. At the beginning of each day, participants
were presented with 48 practice trials with at least 1 trial
from each type in order to orient them with the response
mappings. Our data analyses focused on the audiovisual
trials.

Method of Association

Both auditory pure tones and Gabor patches were catego-
rized on a 6-step “frequency” continuum, as shown in
Table 1. A tone-Gabor patch pair was deemed to match if
their frequency levels corresponded. The Gabor patch with
the lowest frequency grating was arbitrarily matched with
the lowest pitch tone while the Gabor patch with the
highest frequency grating was matched with the highest
pitch tone, and so on. Feedback was provided immediately
after each trial (both matched and mismatched trials)
informing the participant whether their response was cor-
rect or incorrect.

EEG Recordings

EEG recordings were made with an EGI NetStation system
using a dense electrode 128-channel net (Electro Geodesics
International, Eugene, OR). Data were continuously
acquired throughout each testing session with a sampling
rate of 1 kHZ. Electrodes were referenced to the central
electrode (Cz). Two electrodes, one located under each eye
monitored eye movements, and a set of electrodes placed
near the jaw were used for off-line artifact rejection.
Channel impedances were maintained at 50 K Ohms or
under for the duration of the session.

EEG Analysis

After down sampling the data to 250 Hz to reduce the size
of the data sets, a visual inspection was carried out to
determine whether any channels were exceptionally noisy.
Subsequent to inspection, all channels were maintained in
the analyses. Artifacts resulting from facial movement
were eliminated using an automated thresholding proce-
dure from EEGLab. The mean proportion of trials retained
across participants was greater than .90 (.92 for the mat-
ched and .94 for the mismatched condition). Data were
low-pass filtered at 60 Hz and high-pass filtered at > Hz
during acquisition. Baseline correction was carried out on
an interval of 100 ms prior to the onset of the stimulus on
each epoch across each condition [Conditions: AV ,ach,
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AV Mismatch, A-only, and V-only]. Individual averages were
computed across every time point for each electrode of
interest, with these averages computed for correct respon-
ses. GFP analyses were carried out using the entire mon-
tage of scalp electrodes, which included frontal, temporal,
parietal, and occipital electrodes. EEG signals were cal-
culated in 4 ms time bins ranging from 100 to 700 ms post
stimulus for (a) the audiovisual trials in which the fre-
quency of the auditory and visual components matched,
and (b) the “no” trials in which the frequency of the
auditory and visual components of the signal mismatched.
These scores were calculated separately for each training
day to observe how changes in the neural signal co-vary
with behavioral learning and capacity.

Results

The results displaying the hits and false alarms for each
observer across the 7 days are shown in Table 2. Results
from a one-way ANOVA indicate that the mean hit rate
increased across training days (F(6, 20) = 2.73, p < .05).
Results further indicate that false alarm rates showed a
marked decrease across training (F(6, 21) = 6.75,
p < .001). Overall, these results show that the ability to
detect “matching” tones and Gabor patches improved as a
function of training as did one’s ability to correctly reject
(i.e., say “no”) to combinations that did not match.
Signal detection analyses showed strong evidence for a
marked increase in sensitivity (d’) as a function of training
(F(6, 21) = 9.4, p < .0001) (Fig. 2a). Interestingly, evi-
dence also appears to demonstrate that the observers did
not adjust their criterion, ¢, as a function of training (c = —
0.5%(zgrr + zpa). As indicated in Fig. 2b, ¢ remained
approximately constant across the 7 days of training.
Taken together, the accuracy results suggest that training
contributed to an improvement in audiovisual discrimina-
bility, although it did not lead to a strategic alteration in
response criteria. To examine whether significant learning

Table 2 This table shows the hits and false alarm rates (in paren-
theses) for each participant across each training day

Day Obs. 1 Obs. 2 Obs. 3 Obs. 4

1 0.82 (0.48) 0.78 (0.43) 0.71 (0.43) 0.82 (0.33)
2 0.93 (0.42) 0.84 (0.28) 0.77 (0.29) 0.85 (0.35)
3 0.88 (0.34) 0.87 (0.24) 0.83 (0.32) 0.85 (0.28)
4 0.83 (0.24) 0.91 (0.24) 0.78 (0.25) 0.93 (0.29)
5 0.90 (0.33) 0.87 (0.22) 0.86 (0.31) 0.91 (0.27)
6 0.89 (0.24) 0.89 (0.25) 0.88 (0.28) 0.86 (0.25)
7 0.94 (0.29) 0.78 (0.18) 0.87 (0.26) 0.90 (0.25)

Overall, these results demonstrate that sensitivity improved as train-
ing progressed

occurred between days, we carried out contrasts on hits,
false alarm rates, and d’ comparing performance from day
1 to day 2 (in which the greatest increase in learning
appeared to be observed). The results from the paired
samples t-tests indicated an increase in hits (t(6) = 3.38,
p = .014) and d’ (t(6) = 3.14, p = .021) from day 1 to 2,
and a trend toward a reduction in false alarms (t(6) = 2.27,
p = .064). In order to adjust for multiple comparisons, the
alpha level was set to a more conservative level of o/
2 = .025.

Next, Fig. 3 shows plots of the log integrated hazard
functions for each of the four observers, with each function
corresponding to a separate day of training. One may
readily observe from the plots in Fig. 3 that that the inte-
grated hazard functions within each observer are generally
proportional. This suggests that the assumption of propor-
tionality is reasonable in our data.

An inspection of the data in Fig. 3 indicates that a sig-
nificant amount of learning occurred in observers 2, 3 and 4
across days. This is reflected by the fact that the
In[—In[S(?)]] functions increased—a finding associated
with increased capacity and learning, and therefore faster
RTs. In participants 2, 3, and 4, the most notable increase
in capacity was observed immediately after the first day of
training and one day of consolidation. In participant 4, it
appears that learning occurred more gradually, with
capacity increasing somewhat steadily at least up until the
4 or 5th day. The proportion of log integrated hazard
functions in participant 3, interestingly, suggest an increase
in capacity from day 1 to day 2, but minimal learning in
regards to enhanced efficiency from day 2 onward.

Participant 1 appears to be the only participant that
failed to show observable evidence for learning in terms of
capacity. The log integrated hazard functions, while
showing evidence for proportionality across days, failed to
show evidence for increased capacity as a function of
training day. In fact, this participant’s integrated hazard
ratios appear to show evidence for a slowdown across days.
While this participant’s capacity data may be difficult to
interpret, it may show evidence for a speed-accuracy trade-
off such that the participant slowed down in order to
achieve higher accuracy. An analysis of the hits and false
alarms for this participant in Table 1 indicate that this may
be the case. Participant 1’s d’ on day 1 was .97
(p(Hit) = 0.82, p(FA) = 0.48) while on day 7 it was 2.10
(p(Hit) = 0.94, p(FA) = 0.29).

In order to statistically test for hazard function order-
ings, we applied the fixed effect partial likelihood model
using day number as a predictor. We also used accuracy as
a predictor to determine whether evidence for speed-
accuracy trade-offs might emerge. In this particular
example, faster RTs and hence greater capacity would
come at the expense of accuracy, perhaps due to the
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Fig. 2 The left panel (A) shows A 2

d’ averaged across observers, as
a function of learning. The
results strongly indicate an
overall increase in
discriminability across days,
with the largest increase
occurring between days 1 and 2.
The error bars indicate 1
standard error of the mean. The N il
panel on the right (B) shows
¢ (criteria) as a function of
learning. Interestingly, the
results fail to reveal a pattern
between training day and 05+
response criteria
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Fig. 3 This figure displays the
log integrated hazard functions,

6 7 1 2 3 4 5 6 7
Training Day

In[—In[S(2)]] or In[H(t)], across
each training day for each of the
four observers. As one may
observe, the functions are
proportional to one another, and
for participants 2—4, increase as
learning occurs

In-In[S(1)]]

200 400 600 800

200 400
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RT (ms)

lowering of one’s (“yes”) response criteria. The data
shown in Table 2 and Fig. 3 do not indicate the presence of
criteria shifts or this type of speed—accuracy tradeoff for
either the group or in any individual observer.

The results of the statistical analyses show, consistent
with our predictions, that “day number” was a significant
predictor. The beta value, B, was positive for participants 2,
3, and 4, indicating that hazard functions tended to increase
as the days progressed (hx(t) > h;(t)). The results in
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Table 3 show that the p-values from the z-test indicate that
the results were significant at the .05 level for each par-
ticipant. Interestingly, the estimated [ parameter was
negative for participant 1, indicating a slight slow-down as
the days progressed. Viewed in conjunction with this
observer’s accuracy data, it appears to indicate that the
participant decreased their response speed in order to yield
an increase in accuracy. However, the criterion change
(computed using Table 2) from day 1 to day 7 in this
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Table 3 This table shows results from the Cox Proportional Hazard
model fits with “training day” as the predictor for each participant

Obs. Beta z(p) SE

1 —0.04 —1.97 (0.05) 0.02
2 0.13 7.98 (0.0001) 0.02
3 0.05 3.20 (0.014) 0.02
4 0.11 6.50 (0.0001) 0.02

A positive Beta value (and significant z value) signifies that capacity
increased across training days

Table 4 This table shows results from the Cox Proportional Hazard
model fits with “accuracy” as the predictor for each participant

Obs. Beta z(p) SE

1 0.16 1.45 (0.15) 0.11
2 0.43 4.40 (0.0001) 0.10
3 0.37 4.00 (0.0001) 0.09
4 0.36 3.47 (0.001) 0.10

A positive Beta value (and significant z value) signifies higher
capacity, or a greater amount of work completed, for accurate
responses compared to inaccurate responses

participant was minimal (¢ = — 0.43 on day 1; ¢ = —0.50
on day 7). This is consistent with the reasoning that par-
ticipant 1 became more sensitive to detecting the audio-
visual association across training, but at the cost of
decreased capacity or overall efficiency. Finally, to test
whether a significant increase in capacity co-occurred with
the increase in d’, we carried out a contrast on mean
capacity values from day 1 to day 2. The results from the
paired samples t-tests indicated a significant increase in
capacity (t(6) = 2.54, p = 0.043).

The results in Table 4 show the numerical value for the
estimated parameter, f associated with accuracy. We car-
ried out these analyses by coding incorrect responses as 0
and correct responses as /. A positive value for the [
parameter indicates that hazard functions across correct
responses were larger than the hazard functions computed
for incorrect responses. Crucially, a positive value signifies
that observers were responding more accurately and faster
to auditory and visual stimuli with matched frequency
patterns. Conversely, a negative B value (coupled with
evidence for increased capacity in Fig. 3 and Table 3)
could indicate that observers actually responded faster
when they are incorrect compared to when they are correct.
Such a scenario would suggest a very low response
threshold leading to fast incorrect responses (e.g., incor-
rectly saying “no” to signals that match). It is therefore
possible for capacity to increase across days without the
observer adopting an efficient enough response strategy to
slow down when they are incorrect (e.g., Townsend and

Altieri 2012). Hence, fast incorrect responses may actually
indicate inefficient performance. The results in Table 4
reveal that each participant showed evidence for a positive
B value, although participant 1’s only reached marginal
significance. This indicates either that observers set an
efficient response criterion, that observers were generally
more sensitive to “matched” versus mismatched items, or a
combination of the two.

In summary, the behavioral results indicate the presence
of multisensory learning by showing an increase in accu-
racy and sensitivity across days, and a corresponding
increase in capacity in three out of four observers. Even the
observer that failed to show an increase in capacity
exhibited a pattern of results consistent with improved
efficiency; a slowing down of processing in conjunction
with an increase in capacity.

The major aim of this study was to connect behavioral
measures of capacity with neural measures of processing
efficiency as measured using EEG. We first predicted that
behavior would be correlated with neural changes in which
the peak amplitudes of the GFP elicited by the matched
signals (i.e., the “yes” responses) would decrease relative
to the cases in which the auditory and visual signals were
“mismatched”. This pattern of results should emerge since
the expenditure of energy necessary for distinguishing
these signals should decrease across learning.

Neural Measures of Learning: Mean Global Field
Power

The question here deals with how changes in the neural
signals co-vary with increases in capacity. We predict an
overall reduction in the difference in the EEG signal
between the AVaien and AViyismaich conditions. The rea-
son is that as capacity increases, fewer neural resources
should be expended to identify congruent versus incon-
gruent signals. Figure 4 shows color-coded plots of the
mean GFP separately for each of the four participants on
each training day. The left panel shows the mean GFP for
the AVpaen condition, and the right panel shows the GFP
for the mismatch condition. The panels shows GFP sum-
marized over the time interval of 0-500 ms. Qualitatively,
one can observe a reduction in GFP peak amplitude (uV)
across the training days for participants 2—4; this difference
is most noticeable between day 1, and the other 6 days
combined.

First, participant 1’s results indicate a noticeable
amplitude reduction occurring between days 1 and 3, as
expected. However, the difference in amplitude reduction
failed to persist. Overall, the magnitude of participant 1’s
changes was weak compared to the other participants,
which incidentally, mirrors the lack of a positive capacity
change.
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AV Matched

AV Mismatched

Fig. 4 Each panel plots the
mean GFP separately for each 4
.. . Day 1
training day. The panels in the
— Day?2
column on the left show the Dav 3
mean GFP for the audiovisual ) Day 4
matched trials, and the panels D Y 5
on the right show the mean GFP Day 5
for the mismatched trials. The .
Day 7

top row shows participant 1’s

GFP data, the second row
participant 2’s, the third row
participant 3’s, and the fourth
row, participant 4’s

Latency (ms)

Next, for participant 2, observable differences began to
emerge by the second and third day of training. The
observed amplitude reduction appeared across earlier (e.g.,
100-200 ms) and later processing times (post 300 ms). As
predicted, the changes in neural processing corresponded to
the changes in capacity, and persisted over the entire period
of 7 days. A similar pattern of results may be observed
from participant 3’s GFP. However, the changes did not
appear to remain stable until the 4th day of learning. Once
again, the changes persisted over the course of 7 days,
reflecting the corresponding increase in capacity over the
same time period. Participant 4 also showed significant
evidence for learning-associated neural changes within the
first 2-3 days of training. As with participants 2, 3, and 4,
the observed changes persisted over a course of 7 days, and
generally, corresponded with the increase in capacity that
occurred over this period.

To summarize the aforementioned analyses, the bar
graph in Fig. 5 depicts the mean GFP difference averaged
across the interval from 250 to 350 post-onset for each
participant across day of learning. This figure reveals that
the activation of the AVjppuen (‘yes’) trials was reduced
relative to the AV nismacen (‘10°) trials over this time span
(with the exception of participant 1). This observation was
tested statistically by carrying out a repeated-measures
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ANOVA using training day (7) as the within-subject factor.
For each day, the average GFP was obtained for a given
participant over the interval of 250-350 ms (when effects
corresponding to categorization would likely emerge; i.e.,
P300). Hence, we obtained the average ERP in the time
interval from 250 to 350 ms post stimulus onset and sub-
tracted the amplitude of the AVyismaren from the AViyiaen
condition. The results from the repeated measures ANOVA
confirm that there was a significant effect for training day,
with the difference between AVypiacn and AViiismatch
becoming smaller (F(6, 18) = 3.91, p = 0.01). In order to
test for baseline effects we carried out a second repeated
measures ANOVA with training day again as the within
subject factor. We computed the average GFP difference
over the time interval from 0 to 100 ms post stimulus onset
for each training day. As expected, a significant effect of
training day was not observed for this time interval (F(6,
18) = 1.66, p = 0.19).

Next, we carried out analyses of covariance (ANCO-
VAs) on each individual participant to test whether GFP
values significantly change across days and co-vary with
the mean capacity value obtained on that given day. The
results for each participant are displayed in Table 5. The
results for participants 2, 3 and 4 were significant, indi-
cating that GFP values change across days and significantly
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Fig. 5 This bar graph shows
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mean GFP as a function of 2 2
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Table 5 Results from the individual participant ANCOVAs.  needed to learn, but thirty mismatched pairs. Furthermore,

Capacity was associated with mean GFP across each training day
separately for each participant

Participant F p value Mean sq. error
1 4.00 0.101 0.04
2 9.98 0.025* 0.11
3 8.40 0.033* 0.30
4 12.43 0.017* 0.09

Calculated F statistics, corresponding p values, and mean squared
error are displayed

* Indicates significance at the alpha level of .05. The df error was
equal to 5

co-vary with capacity. Participant 1, however, only showed
evidence for marginal significance.

As one final caveat, one alternative explanation for the
EEG findings maybe that the reason the neural activity
changes across days is because participants actually
learned the mismatched stimuli. While this explanation
potentially carries some weight, it appears less likely than
the former scenario because of the larger number of con-
figurations of mismatched stimuli presented to the partici-
pant. Participants have only six matched stimuli that they

the task required them to make a “yes” response when they
matched—Ilikely biasing participants to focus on learning
the matched pairs. We therefore argue that the learning of
the “matched” pairs facilitated underlying neural and
behavioral changes. To summarize, a viable interpretation
of these results is that capacity may constitute a behavioral
index of neural efficiency. A correspondence between
capacity and GFP was observed, indicating that changes in
brain signals during multisensory learning can be inter-
pretable within the milieu of model based capacity
measures.

Discussion

Our results show that capacity (e.g., Townsend and Ashby
1978; Townsend and Wenger 2004; Wenger and Gibson
2004), implemented by utilizing the statistical tools of
hazard functions constitutes an appropriate and compre-
hensive measure of multisensory learning. The methodol-
ogy of using completion times along with additional
measures such as accuracy, d’, and electrophysiological
signals, is advantageous in that it provides a multimodal
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and theoretically based conceptualization of learning. In
this framework, observers should show evidence for more
efficient resource expenditure in their completion times as
learning unfolds. Our study went one step further by pro-
viding neurophysiological evidence showing correspond-
ing changes in brain signals consistent with changes in
efficiency.

These hazard function based tools were used to assess
and quantify multisensory learning over a relatively short
time period. The results revealed that each of the partici-
pants exhibited at least some evidence of learning,
although participant 1’s results significantly diverged from
the others. Participant 1 showed the predicted increase in
accuracy and sensitivity (d’) across days, without showing
marked changes in response bias (c). However, this par-
ticipant failed to show evidence for increased capacity/
efficiency across time—in fact, evidence for decreased
capacity (i.e., slowing) was observed. It is possible that this
particular strategy was undertaken in order to achieve
higher accuracy without a corresponding increase in
capacity. This observation is further exemplified by this
participant’s GFP in the EEG signals, which failed to
provide evidence for a reduction in energy.

The results for participants 2, 3, and 4 showed that
capacity increased dramatically within the first few days.
These results appeared to be accompanied by an increase in
efficient energy expenditure in the brain. In this case, the
difference between the GFP amplitude from the matched
versus mismatched trials decreased (showing that less
processing resources were required to distinguish the sig-
nals) as capacity and d’ increased. We interpreted these
results as evidence showing that the brain can efficiently
learn to associate arbitrary, but spatially and temporally
congruent, auditory and visual stimuli. Our data are con-
sistent with the finding that perception is inherently mul-
tisensory, and that neural plasticity persists into adulthood
with the propensity to effectively learn associations
between congruent multimodal events (e.g., Murray et al.
2004; Shams and Seitz 2008; Seitz et al. 2006; Thelen et al.
2012; Thelen and Murray, 2013). Our approach effectively
builds on previous investigations using accuracy as a
measure of learning (e.g., Seitz et al. 2006) by quantifying
learning in terms of the biologically and neurologically
plausible construct of capacity. Current attempts focus on
building upon the capacity approach by utilizing both RTs
and accuracy in a single function to assess performance
relative to independent model predictions (Townsend and
Altieri 2012).

The approach of using combined behavioral and neural
assessments of learning have implications regarding how
sensory and cognitive experience contributes to our ability
to associate multisensory stimuli from the environment.
Some important statistical considerations for multisensory
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binding include whether the signal course originates from a
common spatial location (Meredith and Stein 1986a, b),
and also whether the timing between the events are struc-
tured in such a way that they appear to originate from a
common source (Colonius and Diederich 2004; Diederich
and Colonius 2009; Powers et al. 2009). For instance,
perceptual training on multisensory stimuli narrows the
binding window (Powers et al. 2009). These findings
indicate that multisensory learning is associated with an
increased aptitude for detecting a mismatch, or interpreting
auditory and visual signals as originating from separate
events. This interpretation bolsters the hypothesis that
connections between auditory and visual brain regions are
reweighed and strengthened during critical stages of
development (e.g., Wallace et al. 2006) and that these
connections retain a considerable degree of plasticity
throughout adulthood (e.g., Powers et al. 2009).

The findings from Figs. 4 and 5 showing the emergence
of differences in matched versus mismatched GFP sub-
sequent tol00 ms are consistent with observations of
interactions between sensory streams in different brain
regions (Molholm et al. 2002; Naue et al. 2011; Pilling
2009; van Wassenhove et al. 2005). Brain areas identified
as multisensory processing circuits have implicated
numerous regions—even early sensory and cortical areas,
to association areas such as the STS (e.g., Stevenson and
James 2009; Cappe et al. 2010). Crucially, perceptual,
sensory, and developmental experience shapes these con-
nections, and individual differences may well be observed
(Powers et al. 2009). This may include the ability to con-
struct associations between qualitatively different signals.
Differences in the data patterns suggest unique strategies
exploited by different participants. Participant 1, for
instance, showed minimal change in GFP and no increase
in capacity across training days. This participant did show
evidence for an increase in sensitivity (d’), although it
seemed to have occurred at the expense of speed and
therefore efficiency. Future studies may examine the extent
to which multisensory learning, as measured by capacity, is
long lasting by examining the extent to which changes
persist over a longer period of weeks or months.

Finally, one advantageous feature of the combined
capacity and neural analyses concerns the sensitivity for
detecting individual differences that may have otherwise
not been detected by changes in accuracy alone. Recall that
in our data sets, each participant, and the data collapsed
across observers, showed evidence for increased accuracy
and sensitivity across days. The RT and capacity analysis,
intriguingly, revealed individual differences in multisen-
sory learning in young, healthy participants that would
otherwise have been missed if we only assessed changes in
mean accuracy or RT. The approach for assessing capacity
should be extended to assess multisensory processing in
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clinical populations, such as those with impairments in
vision or hearing (Erber 2003), schizophrenics (Neufeld
et al. 2007), and in those with autism spectrum disorders
(Johnson et al. 2010). Future research on multisensory
learning may uncover evidence for similar facilitatory
cross-modal mechanisms in audiovisual recognition.
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