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Abstract The ability to effectively combine sensory

inputs across modalities is vital for acquiring a unified

percept of events. For example, watching a hammer hit a

nail while simultaneously identifying the sound as origi-

nating from the event requires the ability to identify spatio-

temporal congruencies and statistical regularities. In this

study, we applied a reaction time and hazard function

measure known as capacity (e.g., Townsend and Ashby-

Cognitive Theory 200–239, 1978) to quantify the extent to

which observers learn paired associations between simple

auditory and visual patterns in a model theoretic manner.

As expected, results showed that learning was associated

with an increase in accuracy, but more significantly, an

increase in capacity. The aim of this study was to associate

capacity measures of multisensory learning, with neural

based measures, namely mean global field power (GFP).

We observed a co-variation between an increase in

capacity, and a decrease in GFP amplitude as learning

occurred. This suggests that capacity constitutes a reliable

behavioral index of efficient energy expenditure in the

neural domain.

Keywords Capacity � Audiovisual integration �
Multisensory learning � Global field power �
Hazard functions

Introduction

The majority of our perceptions are derived from multiple

sensory modalities. For example, when we see a talker’s

face, we can obtain supplementary information from lip-

reading to facilitate word and sentence comprehension.

Each of these sensory inputs is combined into a unified
This is one of several papers published together in Brain Topography

on the ‘‘Special Issue: Auditory Cortex 2012’’.
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percept. Such integration across modalities can result in

significant behavioral benefits, including but not limited to

faster response times (RTs) (e.g. Diederich and Colonius

2004; Hershenson 1962), enhanced detection rates (e.g.

Lovelace et al. 2003), and improved spatial localization

(e.g. Nelson et al. 1998). These processes are far from

simple, however. One of the more substantial issues that

must be overcome is known as the binding problem,

originally defined by William James (James 1890). At any

given moment, there is a large quantity of incoming sen-

sory information in each modality and a well-adapted

perceptual system must be able to correctly bind sensory

information that originates from a single source into a

unified percept, but at the same time, must correctly seg-

regate sensory information that originates from different

sources.

The impact of stimulus factors in multisensory integra-

tion has been relatively well studied. Research originally

using single unit recordings has identified three primary

factors that modulate whether or not two sensory inputs are

integrated, and whether there is a neural benefit relative to

unisensory responses (also known as multisensory gain),

concepts that have been generalized to studies of human

neuroimaging, behavior, and perception.1 The first factor is

the spatial congruence of the auditory and visual inputs.

The more spatially congruent the stimuli, the more likely

they are to be perceptually bound and contribute to mul-

tisensory gain, a finding seen from animal neurophysiology

(Meredith and Stein 1986a, b; Wallace et al. 2004), human

neuroimaging (Fiebelkorn et al. 2010; Macaluso et al.

2004; Meredith and Stein 1996), and human behavior and

perception (Frens et al. 1995; Munhall and Vatikiotis-

Bateson 2004; Wallace et al. 2004). Similarly, the temporal

coincidence of auditory and visual inputs influence inte-

gration; the more synchronous they are, the greater the

probability of integration. Like the spatial principle, the

temporal principle has been demonstrated in studies of

animal neurophysiology (Meredith et al. 1987; Wallace

et al. 2004), human neuroimaging (James and Stevenson,

2012; Macaluso et al. 2004; Miller and D’Esposito 2005;

Stevenson et al. 2010, 2011; Talsma et al. 2009; van Att-

eveldt et al. 2007), and human behavior and perception

(Colonius and Diederich 2010; Conrey and Pisoni 2006;

Diederich and Colonius 2009; Dixon and Spitz 1980;

Hillock et al. 2011; Keetels and Vroomen 2005; van

Wassenhove et al. 2007; Zampini et al. 2005).

Both the spatial and temporal factors are reflective of the

statistics of the natural environment. The third stimulus

factor is effectiveness, or the ability of a stimulus to drive a

given response. Stimulus effectiveness modulates multi-

sensory interactions in such a way that less salient stimuli

produce greater multisensory enhancement relative to

unisensory responses. This phenomenon is known as

inverse effectiveness, which has again been demonstrated

in animal neurophysiology (Meredith and Stein 1986b;

Stein et al. 2009; Wallace et al. 1996), human neuroim-

aging (James et al. 2012; Stevenson et al. 2012, 2009;

Stevenson and James 2009), and human behavior (Altieri

and Townsend 2011; Hecht et al. 2008).

The benefits of multisensory integration can be seen not

only with behavioral facilitation, but also with changes in

the neural response properties. Congruency effects have

been measured in a wide network of brain regions

depending upon the tasks and stimuli used (Doehrmann and

Naumer 2008). For example, a collection of fMRI studies

have identified inferior frontal cortex and superior temporal

cortex as two primary regions showing such congruency

effects with objects (Belardinelli et al. 2004; Hein et al.

2007; Noppeney et al. 2008) and speech (Calvert et al.

2000; Stevenson et al. 2010, 2011; van Atteveldt et al.

2004; van Atteveldt et al. 2007), though it should be noted

that effects are not necessarily confined to these regions

(Laurienti et al. 2003; Taylor et al. 2006).

Multisensory Perceptual Training

The manner with which stimulus inputs are integrated

across the senses can be rapidly changed with perceptual

training. For example, the impact that temporal coinci-

dence has on the binding of auditory and visual changes

can be manipulated in laboratory settings. Through con-

sistent presentations of slightly asynchronous stimuli, the

window of temporal offsets in which an individual will

perceptually bind audiovisual stimuli can be shifted

(Vroomen et al. 2004). Similarly, perceptual feedback

training can narrow the temporal binding window,

increasing the temporal precision of individuals in making

judgments about audiovisual relationships (Powers et al.

2012; Powers et al. 2009; Stevenson et al. 2013). These

examples of multisensory malleability show that even into

adulthood, the mechanisms used to merge information

across sensory modalities remains plastic. A study by

Tanabe et al (2005) used feedback training to teach par-

ticipants to associate arbitrary pairs of temporally modu-

lated noise and visual texture patterns. Using a delayed

match-to-sample task, the authors showed a decrease in

superior temporal sulcus activation subsequent to training

(a known region of audiovisual integration; Beauchamp

et al. 2004; Calvert et al. 2000; James et al. 2011; Ste-

venson et al. 2007, 2009). Importantly, this decrease was

correlated with behavioral accuracy in identifying

1 It is worth noting that these principles are not necessarily associated

with stimulus features per se, but rather neural features including

receptive field properties, effectiveness in eliciting action potentials,

etc.
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associated pairs, suggesting an increased efficiency of

processing with learned audiovisual associations.

In the current study, we propose that an increase in

capacity—a reaction time measure of efficiency—will

result from a learned association between previously

unassociated auditory and visual stimuli (auditory pure-

tones and Gabor patches). We define ‘‘efficiency’’ in the

neural and behavioral domains as the ability to complete a

task in a finite amount of time when provided with a certain

amount of perceptual channels or processing resources.

Consider a multisensory matching task in which the par-

ticipant must make a ‘‘yes’’ response when two stimuli

correspond to one another. Assume the availability of

auditory and visual information, as well as a certain

amount of neural resources. Efficiency increases when

participants are able to make correct responses faster or

more accurately, given the information available. We

measure efficiency using a RT measure of capacity (e.g.,

Townsend and Ashby 1978; see also Townsend and

Wenger 2004; Wenger and Gibson 2004) which will be

described later.

In the neural domain, increases in efficiency should be

reflected by a decrease in brain signals; that is, as one

learns the task, less energy should have to be applied to

distinguish the patterns that match from the ones that

mismatch. Participants will be trained to make a ‘‘yes’’

response if and only if the frequency exhibited by the

auditory pure tone and the Gabor Patch correspond to the

trained match, and a ‘‘no’’ response otherwise. The purpose

of this study is to observe co-variations between capacity

as a statistical measure of multisensory learning, and brain

activation, which index a change in the amount of energy

expended by the neurocognitive system as learning occurs.

Methods: Modeling

Capacity: A Measure of Efficiency

Learning often involves becoming attuned to auditory,

visual, or multimodal regularities (e.g., Saffran et al. 1999;

Seitz et al. 2007), and the subsequent transfer of this

knowledge to memory. Traditional assessments of learning

rely on measuring changes in accuracy, or in the case of

perceptual learning, mean changes in threshold across

stages of practice (e.g., Altieri and Wenger, Under Review;

Dosher and Lu 1999; McKee and Westheimer 1978).

Learning and memory are strongly associated with the

notion of efficiency or capacity. For example, Capacity in

memory has undergone a re-conceptualization over the

years to include stages of learning and transfer via practice

(e.g., Cowan et al. 2005; see also Atkinson and Shiffrin

1968). Nonetheless, capacity is often viewed as a fixed

construct that does not change across time (cf. Townsend

and Altieri 2012).

A considerable body of literature has recast the notion of

capacity as a measure of efficiency, using RT distributions

(e.g., Townsend and Nozawa 1995; Wenger and Gibson

2004) or a combination of RTs and accuracy (Townsend

and Altieri 2012). As Wenger and Gibson (2004) argued,

assessing capacity in terms of mean RTs or mean accuracy

has several shortcomings. First, means provide only an

expected value and therefore do not map well onto the

notion of efficiency or capacity as a measure of system

level performance. Second, cognitive processes involved in

learning, memory, and recognition, expend some amount

of energy and must be completed in a finite amount of time.

Capacity is a measure that assesses the instantaneous

amount of energy at a certain processing time expended to

yield recognition. Specifically, this approach described

next utilizes information from RT distributions to provide

the probability that a process will ‘‘finish’’ in the next

instant of time (i.e., recognition occurs), given that it has

not yet terminated.

Hazard Functions and Efficiency

An important component of our investigation centers on

the implementation of a measure capturing the idea that

learning involves the increasingly efficient use of cognitive

resources. We accomplish this by measuring capacity and

examining the data at the level of the hazard function. One

way in which capacity may be measured, and the method

favored here, involves obtaining the distribution of RTs

from a given experimental condition (for example, from

audiovisual trials, as done here), and computing the esti-

mated hazard functions from the different conditions. The

hazard function provides the probability that a process will

be completed in the next instant in time, given that it has

not completed already by time t. The hazard function may

be written as:

hðtÞ ¼ lim
Dt!0

Pðt� T � t þ DtjT � tÞ
Dt

;

or simply,

hðtÞ ¼ f ðtÞ
1� FðtÞ

The term f(t) denotes the probability density function,

while F(t) is the cumulative probability density function

yielding the probability that recognition has occurred by a

certain time. The term in the denominator, 1-F(t), is a

survivor function expressing the probability that a process

has not completed by a certain time.

The use of hazard functions has been favored in the

literature since they provide an estimate of the ‘‘intensity’’

Brain Topogr
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or the instantaneous amount of work completed (Townsend

and Ashby 1978; see also Wenger and Gibson 2004).

Utilizing hazard functions affords several statistical

advantages compared to using mean RTs or accuracy. As

one example, Townsend (1990) proved that an ordering of

hazard functions from two experimental conditions (A and

B) such that hA(t) [ hB(t) implies not only greater work

completed in condition A relative to B, but also an ordering

of the means from those conditions. However, the converse

is not always true—an ordering of means does not imply an

ordering of hazard functions.

Cox Regression

One potential disadvantage to using hazard functions

concerns the difficulty associated with hazard function

estimation (Luce 1986). While several remedies have been

proposed (see Wenger and Gibson 2004; Wenger et al.

2010), we shall employ a semi-parametric regression pro-

cedure known as Cox proportional hazard models (Cox

1972). The purpose of proportional hazard model regres-

sion is to test for ordering of two or more hazard functions

derived from different experimental conditions. Cox

regression essentially transforms the proportional hazard

functions into linear regression. Here, an independent

variable (i.e., experimental conditions) may serve as a

predictor, while the RTs obtained from these conditions

serve as the data or ‘‘y’’ variable. Proportional hazard

model regression is based on a log-linear regression pro-

cedure, and the method implemented here uses a specific

class of models known in the literature as the fixed-effects

partial likelihood approach (e.g., Allison 1996). Specifi-

cally, it is assumed that the underlying hazard function for

the jth trial in participant 1 at time can be written as

ln[h1j(t)] = bx1j(t) ? a1(t) ? e1. The term a1(t) denotes a

baseline hazard function particular to that observer, and

x1j(t) represents one of the experimental factors, in our case

the training day, that could influence the rate of processing

on a given trial. The weight b represents the relative

strength or influence of this factor. Finally, e1 denotes the

unobservable heterogeneity particular that that individual,

although this can be absorbed into the baseline hazard,

giving us ln[h1j(t)] = bx1j(t) ? a1(t).

One benefit to the hazard function approach is that few

parametric assumptions regarding the underlying distribu-

tion of the data need to be made. The only major

requirement relates to the assumption of proportionality

between the hazard functions from two or more experi-

mental conditions (see Wenger and Gibson 2004). In the

context of our specific case, the underlying hazard func-

tions across days of learning must be proportional to each

other. For example, the hazard functions for days 1 and 2

for a given individual should be h1(t) = ch2(t), where c

reflects a constant of proportionality that remains invariant

across trials, time, and experimental trials. As we shall

demonstrate, the data within each of our participants

reflects this assumption. One graphical test for the pro-

portionality assumption begins with the fact that since

h1(t) = ch2(t), it must also be true that H1(t) = cH2(t).

Then, because we know that the integrated hazard function

H(t) = -ln[S(t)] (where (S(t) = 1-F(t), or 1-CDF), we

can arrive at the following formula: -ln[S1(t)] = c{-

ln[S2(t)]}. Finally, we obtain the log of both sides to get

ln[-ln[S1(t)]] = ln[c] ? ln{-ln[S2(t)]}.

Conveniently, many common statistical packages (e.g.,

R and Matlab) allow one to apply the proportional hazard

model test. Second, it requires few assumptions, the major

one being that the underlying hazard functions are pro-

portional to one another (which can be tested as we discuss

later). Furthermore, unlike many statistical tests such as a

z-test, the proportional hazard model does not make

assumption regarding the parametric form of the underly-

ing RT distribution. As an example, it does not require

researchers to assume a normal distribution in the data. In

this study, we assessed learning in the contextual frame-

work of capacity by measuring capacity and implementing

the Cox proportional hazard model. The hypothesis was

that as participants learned the association across days (the

regression variable) as a result of practice, RTs would

decrease, and hence, the instantaneous amount of work

completed measured by proportional hazards would

increase.

Methods: Experimental Design

The purpose of this study involved analyzing the EEG

signal (a time based neural measure) in conjunction with

capacity as a function of learning across days. Because

capacity constitutes a behaviorally based measure of

energy expenditure, we expected to uncover distinct neural

covariates of efficiency in terms of ‘‘work completed’’.

Specifically, as capacity increases as observers learn the

association between the auditory and visual patterns, we

expect to find a corresponding decrease in the amplitude of

the EEG signal between the conditions in which the com-

ponents matched versus when the components were mis-

matched. Hence, we predict that the energy required to

discriminate the matched versus mismatched signals

should decrease across days as observers show evidence for

learning (see e.g., Stevenson et al. 2007, for an analogue

using fMRI). Specifically, we predicted a co-variation

between mean Global Field Power (GFP)—a measure of

spatial standard deviation (e.g., Skrandies 1990), and

capacity. As capacity increases, the difference in GFP

between the matched versus mismatched AV signal should
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decrease. Capacity should essentially index a perceptual

component mirroring increasingly efficient use of neural

resources as learning unfolds.

Finally, a significant motivation for the predicted co-

variation between behavioral and neural measures of effi-

ciency lies in recent findings suggesting that capacity is a

superior predictor of the integrity of neural circuits perti-

nent to episodic memory compared to mean RT or accu-

racy (Wenger et al. 2010). Wenger et al. (2010) carried out

an analysis of capacity in an episodic cued memory task

using aging participants. The authors found that the per-

formance of a computational model of a hippocampal

circuit, as a function of different levels of degradation, was

a superior predictor of capacity scores (compared to mean

RT and accuracy) in normal aging, MCI (mild cognitive

impairment), and participants with dementia of the Alz-

heimer’s type.

Participants

Four right-handed college-aged observers were recruited

from The University of Oklahoma campus and paid for

their participation (mean age = 21). Each of the observers

had normal or corrected-to-normal vision and reported no

history of hearing or cognitive impairment. Participants

were naı̈ve regarding the purpose of the study. This study

was approved by the University of Oklahoma Institutional

Review Board and meets the qualifications for ethical

research participation.

Materials

The visual stimuli consisted of diagonally oriented (45�)

Gabor patches presented foveally in the center of the

screen. Figure 1 shows examples of the six Gabor gratings

presented in the audiovisual task. Stimuli were created on a

continuum ranging from ‘‘low’’ to ‘‘high’’ frequency in six

step sizes. The lowest frequency Gabor patch was created

at 4 Hz, followed by 5, 6.6, 8.3, 12.5 Hz, up to the highest

frequency of 25 Hz. The stimuli were designed in such a

way as to create perceptually similar step sizes in fre-

quency at each point in the continuum. Stimuli were pre-

sented centered on a 4 9 4 inch square with a luminance of

75 cd/m2 at a background luminance level of 46 cd/m2.

Experimental stimuli were presented on a gamma-cor-

rected computer CRT monitor.

The auditory stimuli consisted of digitized pure tones

created in Matlab. The tones were presented at approxi-

mately 68 dB SPL over speakers positioned to each side of

the participant in a quiet, sound attenuated booth. Similar

to the visual stimuli, the tones were created on a six-step

continuum ranging from ‘‘low’’ to ‘‘high’’ frequency. The

lowest frequency tone was digitized at 400 Hz, followed by

500, 660, 830, 1250 Hz, and finally, 2500 Hz.

The auditory and visual stimulus components were

factorially combined at each level (6-visual 9 6-auditory)

for a total of 36 unique audiovisual trial types. Auditory

and visual-only trials were presented as well, for a total of

48 trial types. Stimuli were presented in a completely

darkened sound attenuated chamber and were all 100 ms in

duration and simultaneously presented. Participants were

seated 76 cm from the monitor and their chins were placed

comfortably on a chin rest.

Procedure

The experiment required 7 days for each observer. Each

experimental session lasted approximately 45–60 min.

Fig. 1 Gabor patches oriented

diagonally. The visual stimuli,

when present consisted of 1 of 6

levels of frequency as shown in

this figure. From the top left to

the bottom right cycles in Hz: 4,

5, 6.6, 8.3, 12.5, and 25 Hz.

Auditory pure tones were

created at 400, 500, 660, 830,

1,250, and 2,500 Hz
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Observers participated in one session per day with a total of

600 trials per day (120 A-only with 20 at each frequency,

120 V-only with 20 at each frequency, 120 AV when fre-

quencies matched, and 240 AV trials when the frequencies

mismatched).2 Each experimental trial began with a black

dot appearing in the center of a white background on the

computer monitor. This was the cue for the participant to

initiate the experimental trial by pressing the left button on

the button pad in front of them. The initiation of each trial

began with a random fore period of 100–500 ms followed

by either an audiovisual, auditory-only, or visual-only trial.

Audiovisual trials consisted of a simultaneously pre-

sented tone and Gabor patch. Of the 360 AV trials pre-

sented per session, 120 of these were trials in which the

frequency components matched (i.e., were associated).

Because the purpose of this study involved teaching par-

ticipants to associate auditory and visual images in terms of

physical stimulus properties, participants were instructed to

respond by pressing the right button labeled YES as

quickly and as accurately as possible when the frequency

of the auditory and visual modalities were associated (see

below for a description of the method of association). The

diagonal columns (in bold) in Table 1 show the total

number of each type of ‘‘yes’’ trials for each cell in which

the auditory and visual frequency components matched.

The off-diagonal columns show the cases in which auditory

and visual information were presented but did not match.

Participants were instructed to respond ‘‘no’’ on these

trails. On the auditory-only trials, the tone was presented

with a static gray square. On the visual-only trials, a Gabor

patch was presented without an accompanying sound.

Participants were required to make a ‘‘no’’ response on

unisensory trials. RTs and accuracy were collected from

both ‘‘yes’’ and ‘‘no’’ trials and utilized in the subsequent

data analysis. At the beginning of each day, participants

were presented with 48 practice trials with at least 1 trial

from each type in order to orient them with the response

mappings. Our data analyses focused on the audiovisual

trials.

Method of Association

Both auditory pure tones and Gabor patches were catego-

rized on a 6-step ‘‘frequency’’ continuum, as shown in

Table 1. A tone-Gabor patch pair was deemed to match if

their frequency levels corresponded. The Gabor patch with

the lowest frequency grating was arbitrarily matched with

the lowest pitch tone while the Gabor patch with the

highest frequency grating was matched with the highest

pitch tone, and so on. Feedback was provided immediately

after each trial (both matched and mismatched trials)

informing the participant whether their response was cor-

rect or incorrect.

EEG Recordings

EEG recordings were made with an EGI NetStation system

using a dense electrode 128-channel net (Electro Geodesics

International, Eugene, OR). Data were continuously

acquired throughout each testing session with a sampling

rate of 1 kHZ. Electrodes were referenced to the central

electrode (Cz). Two electrodes, one located under each eye

monitored eye movements, and a set of electrodes placed

near the jaw were used for off-line artifact rejection.

Channel impedances were maintained at 50 K Ohms or

under for the duration of the session.

EEG Analysis

After down sampling the data to 250 Hz to reduce the size

of the data sets, a visual inspection was carried out to

determine whether any channels were exceptionally noisy.

Subsequent to inspection, all channels were maintained in

the analyses. Artifacts resulting from facial movement

were eliminated using an automated thresholding proce-

dure from EEGLab. The mean proportion of trials retained

across participants was greater than .90 (.92 for the mat-

ched and .94 for the mismatched condition). Data were

low-pass filtered at 60 Hz and high-pass filtered at � Hz

during acquisition. Baseline correction was carried out on

an interval of 100 ms prior to the onset of the stimulus on

each epoch across each condition [Conditions: AVmatch,

Table 1 This table shows the total number of trials presented for

each stimulus configuration. That is, there are 36 AV stimuli, plus 6

A-only and 6 V-only for a total of 48 trial types

V1 V2 V3 V4 V5 V6 A-only

A1 140 56 56 56 56 56 140

A2 56 140 56 56 56 56 140

A3 56 56 140 56 56 56 140

A4 56 56 56 140 56 56 140

A5 56 56 56 56 140 56 140

A6 56 56 56 56 56 140 140

V-Only 140 140 140 140 140 140

The columns on the diagonal (in bold) correspond to the ‘‘yes’’ trials

in which the frequency of the Gabor patch and tone match

2 Contingencies, or probabilistic stimulus configurations that could

facilitate/inhibit audiovisual target (i.e., matched) trial responses

(Mordkoff and Yantis 1991), were reduced by appropriately balanc-

ing redundant, single, and target-absent trials. Although this yielded a

difference in the number of matched and mismatched audiovisual

trials, the proportion remained constant across training days. Hence,

holding the proportion of audiovisual matched versus mismatched

trials constant across days provides a valid way to examine the effects

of training on changes in capacity and neural signals.
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AVMismatch, A-only, and V-only]. Individual averages were

computed across every time point for each electrode of

interest, with these averages computed for correct respon-

ses. GFP analyses were carried out using the entire mon-

tage of scalp electrodes, which included frontal, temporal,

parietal, and occipital electrodes. EEG signals were cal-

culated in 4 ms time bins ranging from 100 to 700 ms post

stimulus for (a) the audiovisual trials in which the fre-

quency of the auditory and visual components matched,

and (b) the ‘‘no’’ trials in which the frequency of the

auditory and visual components of the signal mismatched.

These scores were calculated separately for each training

day to observe how changes in the neural signal co-vary

with behavioral learning and capacity.

Results

The results displaying the hits and false alarms for each

observer across the 7 days are shown in Table 2. Results

from a one-way ANOVA indicate that the mean hit rate

increased across training days (F(6, 20) = 2.73, p \ .05).

Results further indicate that false alarm rates showed a

marked decrease across training (F(6, 21) = 6.75,

p \ .001). Overall, these results show that the ability to

detect ‘‘matching’’ tones and Gabor patches improved as a

function of training as did one’s ability to correctly reject

(i.e., say ‘‘no’’) to combinations that did not match.

Signal detection analyses showed strong evidence for a

marked increase in sensitivity (d’) as a function of training

(F(6, 21) = 9.4, p \ .0001) (Fig. 2a). Interestingly, evi-

dence also appears to demonstrate that the observers did

not adjust their criterion, c, as a function of training (c = -

0.5*(zHIT ? zFA). As indicated in Fig. 2b, c remained

approximately constant across the 7 days of training.

Taken together, the accuracy results suggest that training

contributed to an improvement in audiovisual discrimina-

bility, although it did not lead to a strategic alteration in

response criteria. To examine whether significant learning

occurred between days, we carried out contrasts on hits,

false alarm rates, and d’ comparing performance from day

1 to day 2 (in which the greatest increase in learning

appeared to be observed). The results from the paired

samples t-tests indicated an increase in hits (t(6) = 3.38,

p = .014) and d’ (t(6) = 3.14, p = .021) from day 1 to 2,

and a trend toward a reduction in false alarms (t(6) = 2.27,

p = .064). In order to adjust for multiple comparisons, the

alpha level was set to a more conservative level of a/

2 = .025.

Next, Fig. 3 shows plots of the log integrated hazard

functions for each of the four observers, with each function

corresponding to a separate day of training. One may

readily observe from the plots in Fig. 3 that that the inte-

grated hazard functions within each observer are generally

proportional. This suggests that the assumption of propor-

tionality is reasonable in our data.

An inspection of the data in Fig. 3 indicates that a sig-

nificant amount of learning occurred in observers 2, 3 and 4

across days. This is reflected by the fact that the

ln[-ln[S(t)]] functions increased—a finding associated

with increased capacity and learning, and therefore faster

RTs. In participants 2, 3, and 4, the most notable increase

in capacity was observed immediately after the first day of

training and one day of consolidation. In participant 4, it

appears that learning occurred more gradually, with

capacity increasing somewhat steadily at least up until the

4 or 5th day. The proportion of log integrated hazard

functions in participant 3, interestingly, suggest an increase

in capacity from day 1 to day 2, but minimal learning in

regards to enhanced efficiency from day 2 onward.

Participant 1 appears to be the only participant that

failed to show observable evidence for learning in terms of

capacity. The log integrated hazard functions, while

showing evidence for proportionality across days, failed to

show evidence for increased capacity as a function of

training day. In fact, this participant’s integrated hazard

ratios appear to show evidence for a slowdown across days.

While this participant’s capacity data may be difficult to

interpret, it may show evidence for a speed-accuracy trade-

off such that the participant slowed down in order to

achieve higher accuracy. An analysis of the hits and false

alarms for this participant in Table 1 indicate that this may

be the case. Participant 1’s d’ on day 1 was .97

(p(Hit) = 0.82, p(FA) = 0.48) while on day 7 it was 2.10

(p(Hit) = 0.94, p(FA) = 0.29).

In order to statistically test for hazard function order-

ings, we applied the fixed effect partial likelihood model

using day number as a predictor. We also used accuracy as

a predictor to determine whether evidence for speed-

accuracy trade-offs might emerge. In this particular

example, faster RTs and hence greater capacity would

come at the expense of accuracy, perhaps due to the

Table 2 This table shows the hits and false alarm rates (in paren-

theses) for each participant across each training day

Day Obs. 1 Obs. 2 Obs. 3 Obs. 4

1 0.82 (0.48) 0.78 (0.43) 0.71 (0.43) 0.82 (0.33)

2 0.93 (0.42) 0.84 (0.28) 0.77 (0.29) 0.85 (0.35)

3 0.88 (0.34) 0.87 (0.24) 0.83 (0.32) 0.85 (0.28)

4 0.83 (0.24) 0.91 (0.24) 0.78 (0.25) 0.93 (0.29)

5 0.90 (0.33) 0.87 (0.22) 0.86 (0.31) 0.91 (0.27)

6 0.89 (0.24) 0.89 (0.25) 0.88 (0.28) 0.86 (0.25)

7 0.94 (0.29) 0.78 (0.18) 0.87 (0.26) 0.90 (0.25)

Overall, these results demonstrate that sensitivity improved as train-

ing progressed
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lowering of one’s (‘‘yes’’) response criteria. The data

shown in Table 2 and Fig. 3 do not indicate the presence of

criteria shifts or this type of speed–accuracy tradeoff for

either the group or in any individual observer.

The results of the statistical analyses show, consistent

with our predictions, that ‘‘day number’’ was a significant

predictor. The beta value, b, was positive for participants 2,

3, and 4, indicating that hazard functions tended to increase

as the days progressed (h2(t) [ h1(t)). The results in

Table 3 show that the p-values from the z-test indicate that

the results were significant at the .05 level for each par-

ticipant. Interestingly, the estimated b parameter was

negative for participant 1, indicating a slight slow-down as

the days progressed. Viewed in conjunction with this

observer’s accuracy data, it appears to indicate that the

participant decreased their response speed in order to yield

an increase in accuracy. However, the criterion change

(computed using Table 2) from day 1 to day 7 in this

Fig. 2 The left panel (A) shows

d’ averaged across observers, as

a function of learning. The

results strongly indicate an

overall increase in

discriminability across days,

with the largest increase

occurring between days 1 and 2.

The error bars indicate 1

standard error of the mean. The

panel on the right (B) shows

c (criteria) as a function of

learning. Interestingly, the

results fail to reveal a pattern

between training day and

response criteria

Fig. 3 This figure displays the

log integrated hazard functions,

ln[-ln[S(t)]] or ln[H(t)], across

each training day for each of the

four observers. As one may

observe, the functions are

proportional to one another, and

for participants 2–4, increase as

learning occurs
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participant was minimal (c = - 0.43 on day 1; c = -0.50

on day 7). This is consistent with the reasoning that par-

ticipant 1 became more sensitive to detecting the audio-

visual association across training, but at the cost of

decreased capacity or overall efficiency. Finally, to test

whether a significant increase in capacity co-occurred with

the increase in d’, we carried out a contrast on mean

capacity values from day 1 to day 2. The results from the

paired samples t-tests indicated a significant increase in

capacity (t(6) = 2.54, p = 0.043).

The results in Table 4 show the numerical value for the

estimated parameter, b associated with accuracy. We car-

ried out these analyses by coding incorrect responses as 0

and correct responses as 1. A positive value for the b
parameter indicates that hazard functions across correct

responses were larger than the hazard functions computed

for incorrect responses. Crucially, a positive value signifies

that observers were responding more accurately and faster

to auditory and visual stimuli with matched frequency

patterns. Conversely, a negative b value (coupled with

evidence for increased capacity in Fig. 3 and Table 3)

could indicate that observers actually responded faster

when they are incorrect compared to when they are correct.

Such a scenario would suggest a very low response

threshold leading to fast incorrect responses (e.g., incor-

rectly saying ‘‘no’’ to signals that match). It is therefore

possible for capacity to increase across days without the

observer adopting an efficient enough response strategy to

slow down when they are incorrect (e.g., Townsend and

Altieri 2012). Hence, fast incorrect responses may actually

indicate inefficient performance. The results in Table 4

reveal that each participant showed evidence for a positive

b value, although participant 1’s only reached marginal

significance. This indicates either that observers set an

efficient response criterion, that observers were generally

more sensitive to ‘‘matched’’ versus mismatched items, or a

combination of the two.

In summary, the behavioral results indicate the presence

of multisensory learning by showing an increase in accu-

racy and sensitivity across days, and a corresponding

increase in capacity in three out of four observers. Even the

observer that failed to show an increase in capacity

exhibited a pattern of results consistent with improved

efficiency; a slowing down of processing in conjunction

with an increase in capacity.

The major aim of this study was to connect behavioral

measures of capacity with neural measures of processing

efficiency as measured using EEG. We first predicted that

behavior would be correlated with neural changes in which

the peak amplitudes of the GFP elicited by the matched

signals (i.e., the ‘‘yes’’ responses) would decrease relative

to the cases in which the auditory and visual signals were

‘‘mismatched’’. This pattern of results should emerge since

the expenditure of energy necessary for distinguishing

these signals should decrease across learning.

Neural Measures of Learning: Mean Global Field

Power

The question here deals with how changes in the neural

signals co-vary with increases in capacity. We predict an

overall reduction in the difference in the EEG signal

between the AVMatch and AVMismatch conditions. The rea-

son is that as capacity increases, fewer neural resources

should be expended to identify congruent versus incon-

gruent signals. Figure 4 shows color-coded plots of the

mean GFP separately for each of the four participants on

each training day. The left panel shows the mean GFP for

the AVMatch condition, and the right panel shows the GFP

for the mismatch condition. The panels shows GFP sum-

marized over the time interval of 0–500 ms. Qualitatively,

one can observe a reduction in GFP peak amplitude (uV)

across the training days for participants 2–4; this difference

is most noticeable between day 1, and the other 6 days

combined.

First, participant 1’s results indicate a noticeable

amplitude reduction occurring between days 1 and 3, as

expected. However, the difference in amplitude reduction

failed to persist. Overall, the magnitude of participant 1’s

changes was weak compared to the other participants,

which incidentally, mirrors the lack of a positive capacity

change.

Table 3 This table shows results from the Cox Proportional Hazard

model fits with ‘‘training day’’ as the predictor for each participant

Obs. Beta z(p) SE

1 -0.04 -1.97 (0.05) 0.02

2 0.13 7.98 (0.0001) 0.02

3 0.05 3.20 (0.014) 0.02

4 0.11 6.50 (0.0001) 0.02

A positive Beta value (and significant z value) signifies that capacity

increased across training days

Table 4 This table shows results from the Cox Proportional Hazard

model fits with ‘‘accuracy’’ as the predictor for each participant

Obs. Beta z(p) SE

1 0.16 1.45 (0.15) 0.11

2 0.43 4.40 (0.0001) 0.10

3 0.37 4.00 (0.0001) 0.09

4 0.36 3.47 (0.001) 0.10

A positive Beta value (and significant z value) signifies higher

capacity, or a greater amount of work completed, for accurate

responses compared to inaccurate responses
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Next, for participant 2, observable differences began to

emerge by the second and third day of training. The

observed amplitude reduction appeared across earlier (e.g.,

100–200 ms) and later processing times (post 300 ms). As

predicted, the changes in neural processing corresponded to

the changes in capacity, and persisted over the entire period

of 7 days. A similar pattern of results may be observed

from participant 3’s GFP. However, the changes did not

appear to remain stable until the 4th day of learning. Once

again, the changes persisted over the course of 7 days,

reflecting the corresponding increase in capacity over the

same time period. Participant 4 also showed significant

evidence for learning-associated neural changes within the

first 2–3 days of training. As with participants 2, 3, and 4,

the observed changes persisted over a course of 7 days, and

generally, corresponded with the increase in capacity that

occurred over this period.

To summarize the aforementioned analyses, the bar

graph in Fig. 5 depicts the mean GFP difference averaged

across the interval from 250 to 350 post-onset for each

participant across day of learning. This figure reveals that

the activation of the AVMatch (‘yes’) trials was reduced

relative to the AVmismatch (‘no’) trials over this time span

(with the exception of participant 1). This observation was

tested statistically by carrying out a repeated-measures

ANOVA using training day (7) as the within-subject factor.

For each day, the average GFP was obtained for a given

participant over the interval of 250–350 ms (when effects

corresponding to categorization would likely emerge; i.e.,

P300). Hence, we obtained the average ERP in the time

interval from 250 to 350 ms post stimulus onset and sub-

tracted the amplitude of the AVMismatch from the AVMatch

condition. The results from the repeated measures ANOVA

confirm that there was a significant effect for training day,

with the difference between AVMatch and AVMismatch

becoming smaller (F(6, 18) = 3.91, p = 0.01). In order to

test for baseline effects we carried out a second repeated

measures ANOVA with training day again as the within

subject factor. We computed the average GFP difference

over the time interval from 0 to 100 ms post stimulus onset

for each training day. As expected, a significant effect of

training day was not observed for this time interval (F(6,

18) = 1.66, p = 0.19).

Next, we carried out analyses of covariance (ANCO-

VAs) on each individual participant to test whether GFP

values significantly change across days and co-vary with

the mean capacity value obtained on that given day. The

results for each participant are displayed in Table 5. The

results for participants 2, 3 and 4 were significant, indi-

cating that GFP values change across days and significantly

Fig. 4 Each panel plots the

mean GFP separately for each

training day. The panels in the

column on the left show the

mean GFP for the audiovisual

matched trials, and the panels

on the right show the mean GFP

for the mismatched trials. The

top row shows participant 1’s

GFP data, the second row

participant 2’s, the third row

participant 3’s, and the fourth

row, participant 4’s
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co-vary with capacity. Participant 1, however, only showed

evidence for marginal significance.

As one final caveat, one alternative explanation for the

EEG findings maybe that the reason the neural activity

changes across days is because participants actually

learned the mismatched stimuli. While this explanation

potentially carries some weight, it appears less likely than

the former scenario because of the larger number of con-

figurations of mismatched stimuli presented to the partici-

pant. Participants have only six matched stimuli that they

needed to learn, but thirty mismatched pairs. Furthermore,

the task required them to make a ‘‘yes’’ response when they

matched—likely biasing participants to focus on learning

the matched pairs. We therefore argue that the learning of

the ‘‘matched’’ pairs facilitated underlying neural and

behavioral changes. To summarize, a viable interpretation

of these results is that capacity may constitute a behavioral

index of neural efficiency. A correspondence between

capacity and GFP was observed, indicating that changes in

brain signals during multisensory learning can be inter-

pretable within the milieu of model based capacity

measures.

Discussion

Our results show that capacity (e.g., Townsend and Ashby

1978; Townsend and Wenger 2004; Wenger and Gibson

2004), implemented by utilizing the statistical tools of

hazard functions constitutes an appropriate and compre-

hensive measure of multisensory learning. The methodol-

ogy of using completion times along with additional

measures such as accuracy, d’, and electrophysiological

signals, is advantageous in that it provides a multimodal

Fig. 5 This bar graph shows

mean GFP as a function of

training day for each participant

(rows 1–4; see Fig. 4). The

panels in the left column show

mean GFP averaged over the

interval ranging from 250 to

350 ms post stimulus onset,

while the panels in the right

column show the mean GFP

averaged over the 0–100 ms

interval

Table 5 Results from the individual participant ANCOVAs.

Capacity was associated with mean GFP across each training day

separately for each participant

Participant F p value Mean sq. error

1 4.00 0.101 0.04

2 9.98 0.025* 0.11

3 8.40 0.033* 0.30

4 12.43 0.017* 0.09

Calculated F statistics, corresponding p values, and mean squared

error are displayed

* Indicates significance at the alpha level of .05. The df error was

equal to 5
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and theoretically based conceptualization of learning. In

this framework, observers should show evidence for more

efficient resource expenditure in their completion times as

learning unfolds. Our study went one step further by pro-

viding neurophysiological evidence showing correspond-

ing changes in brain signals consistent with changes in

efficiency.

These hazard function based tools were used to assess

and quantify multisensory learning over a relatively short

time period. The results revealed that each of the partici-

pants exhibited at least some evidence of learning,

although participant 1’s results significantly diverged from

the others. Participant 1 showed the predicted increase in

accuracy and sensitivity (d’) across days, without showing

marked changes in response bias (c). However, this par-

ticipant failed to show evidence for increased capacity/

efficiency across time—in fact, evidence for decreased

capacity (i.e., slowing) was observed. It is possible that this

particular strategy was undertaken in order to achieve

higher accuracy without a corresponding increase in

capacity. This observation is further exemplified by this

participant’s GFP in the EEG signals, which failed to

provide evidence for a reduction in energy.

The results for participants 2, 3, and 4 showed that

capacity increased dramatically within the first few days.

These results appeared to be accompanied by an increase in

efficient energy expenditure in the brain. In this case, the

difference between the GFP amplitude from the matched

versus mismatched trials decreased (showing that less

processing resources were required to distinguish the sig-

nals) as capacity and d’ increased. We interpreted these

results as evidence showing that the brain can efficiently

learn to associate arbitrary, but spatially and temporally

congruent, auditory and visual stimuli. Our data are con-

sistent with the finding that perception is inherently mul-

tisensory, and that neural plasticity persists into adulthood

with the propensity to effectively learn associations

between congruent multimodal events (e.g., Murray et al.

2004; Shams and Seitz 2008; Seitz et al. 2006; Thelen et al.

2012; Thelen and Murray, 2013). Our approach effectively

builds on previous investigations using accuracy as a

measure of learning (e.g., Seitz et al. 2006) by quantifying

learning in terms of the biologically and neurologically

plausible construct of capacity. Current attempts focus on

building upon the capacity approach by utilizing both RTs

and accuracy in a single function to assess performance

relative to independent model predictions (Townsend and

Altieri 2012).

The approach of using combined behavioral and neural

assessments of learning have implications regarding how

sensory and cognitive experience contributes to our ability

to associate multisensory stimuli from the environment.

Some important statistical considerations for multisensory

binding include whether the signal course originates from a

common spatial location (Meredith and Stein 1986a, b),

and also whether the timing between the events are struc-

tured in such a way that they appear to originate from a

common source (Colonius and Diederich 2004; Diederich

and Colonius 2009; Powers et al. 2009). For instance,

perceptual training on multisensory stimuli narrows the

binding window (Powers et al. 2009). These findings

indicate that multisensory learning is associated with an

increased aptitude for detecting a mismatch, or interpreting

auditory and visual signals as originating from separate

events. This interpretation bolsters the hypothesis that

connections between auditory and visual brain regions are

reweighed and strengthened during critical stages of

development (e.g., Wallace et al. 2006) and that these

connections retain a considerable degree of plasticity

throughout adulthood (e.g., Powers et al. 2009).

The findings from Figs. 4 and 5 showing the emergence

of differences in matched versus mismatched GFP sub-

sequent to100 ms are consistent with observations of

interactions between sensory streams in different brain

regions (Molholm et al. 2002; Naue et al. 2011; Pilling

2009; van Wassenhove et al. 2005). Brain areas identified

as multisensory processing circuits have implicated

numerous regions—even early sensory and cortical areas,

to association areas such as the STS (e.g., Stevenson and

James 2009; Cappe et al. 2010). Crucially, perceptual,

sensory, and developmental experience shapes these con-

nections, and individual differences may well be observed

(Powers et al. 2009). This may include the ability to con-

struct associations between qualitatively different signals.

Differences in the data patterns suggest unique strategies

exploited by different participants. Participant 1, for

instance, showed minimal change in GFP and no increase

in capacity across training days. This participant did show

evidence for an increase in sensitivity (d’), although it

seemed to have occurred at the expense of speed and

therefore efficiency. Future studies may examine the extent

to which multisensory learning, as measured by capacity, is

long lasting by examining the extent to which changes

persist over a longer period of weeks or months.

Finally, one advantageous feature of the combined

capacity and neural analyses concerns the sensitivity for

detecting individual differences that may have otherwise

not been detected by changes in accuracy alone. Recall that

in our data sets, each participant, and the data collapsed

across observers, showed evidence for increased accuracy

and sensitivity across days. The RT and capacity analysis,

intriguingly, revealed individual differences in multisen-

sory learning in young, healthy participants that would

otherwise have been missed if we only assessed changes in

mean accuracy or RT. The approach for assessing capacity

should be extended to assess multisensory processing in
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clinical populations, such as those with impairments in

vision or hearing (Erber 2003), schizophrenics (Neufeld

et al. 2007), and in those with autism spectrum disorders

(Johnson et al. 2010). Future research on multisensory

learning may uncover evidence for similar facilitatory

cross-modal mechanisms in audiovisual recognition.
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